If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-55=0
a = 2; b = 5; c = -55;
Δ = b2-4ac
Δ = 52-4·2·(-55)
Δ = 465
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{465}}{2*2}=\frac{-5-\sqrt{465}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{465}}{2*2}=\frac{-5+\sqrt{465}}{4} $
| Y2=-(2y-35) | | -3(1+4x)=-31-8x | | 6y-3y-11=44.56 | | -1/4-9=-7u+7 | | 3(1+3a)+6=4a+34 | | 7x+2=28+5x-5x | | 40=x-2 | | (4x+-32)=(3x+9) | | 7m-5=61 | | 6y-4y-9=22.74 | | 4(v-3)-6v=2 | | 6(4-7v)=v-19 | | 2−2n=3n+17n= | | 5(2x=9)=-48+13 | | (x+8)^2-4*(8x+1)=0 | | 21=5x-2x | | 6n-3(3-3n)=33=8n | | a+30+4a=180 | | 14+12u=9u | | 3/2m=16 | | 14+12u=-9u | | -7(v-1)=-8v+14 | | 9x+4x=12x+8 | | 17+4h+2=1−5hh= | | 17+4h+2=1−5h,h= | | S+7+78+s+11=180 | | 2x-8x+5=0 | | 6x^2−2=13 | | (k+8)^2-4*(8K+1)=0 | | -13+3x=x-5 | | 1+3(2b+4)=13+6b | | -12-5x=-8x+2 |